

Available online at www.sciencedirect.com

ScienceDirect

http://www.elsevier.com/locate/biombioe

Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

BIOMASS & BIOENERGY

Armando González Sánchez^{a,*}, Trinidad Eliseo Flores Márquez^b, Sergio Revah^c, Juan Manuel Morgan Sagastume^{a,b}

^a Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), México City, Mexico ^b IBT Consultores e Ingeniería SA de CV (IBTECH), México City, Mexico

^c Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Cuajimalpa, México City, Mexico

ARTICLE INFO

Article history: Received 7 December 2013 Received in revised form 1 April 2014 Accepted 4 April 2014 Available online 26 April 2014

Keywords: Sulfide-oxidizing biomass Biogas Hydrogen sulfide Wastewater treatment plant Desulfurization Oxygen uptake rate

ABSTRACT

Operational experiences and strategies to get suitable chemolithoautotrophic sulfideoxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H₂S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Gaseous fuels, including those generated from non-fossil sources such as biogas, commonly contain significant concentrations of hydrogen sulfide (H₂S). Besides the corrosion effects caused on the pipes and in the combustion equipment, significant environmental damage is caused by the acid rain produced by the emitted SO₂. Thus, reliable economic desulfurization processes with minimum impact to the environment are needed. Physicochemical methods complemented with biological treatments have shown to satisfy these requirements, especially for biogas desulfurization [1-5].

Abbreviations: OUR, Oxygen uptake rate (g $m^{-3} h^{-1}$); FSB, Full-scale bioreactor; SOC, Sulfide-oxidizing consortium; ORP, Redox potential (mV); PSB, Pilot scale bioreactor; TVS, Total volatile solids (kg m⁻³).

Corresponding author. Coordination of Environmental Engineering, Building 5, 3rd Floor, Office 413, Engineering Institute UNAM, Circuito Escolar, Ciudad Universitaria, ZIP 04510 Mexico D.F., Mexico. Tel.: +52 55 56 23 36 00x8662.

E-mail addresses: AGonzalezS@iingen.unam.mx, armandouam@hotmail.com (A. González Sánchez). http://dx.doi.org/10.1016/j.biombioe.2014.04.008

^{0961-9534/© 2014} Elsevier Ltd. All rights reserved.