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SUMMARY

An approach to assess the reliability of nonlinear systems under earth-
quake loading is presented. Monte Carlo. simulation techniques are used to
obtain probabilistic descriptions of the uncertainties on the seismic exci-
tation at a given site during given time intervals and the uncertainties a-
bout the properties of the structural systems. The reliability of R/C sim-
ple frame systems located in Mexico City soft soil zone was evaluated. The
results show the extreme sensitivity of the estimated failure probabilities
to the distributions of the maximum ground intensities and to the upper
bound of the latter.

INTRODUCTION

Significant contradictions are found when trying to reconcile the re-
sults of seismic risk studies with the performance of actual structures in
seismic regions. These inconsistencies arise largely from our lack of in-
formation about reliability of random structural systems subjected to ran-
dom earthquakes.

Determination of the reliability of nonlinear systems under seismic
loading requires the performance of the following steps: a) statistical pre-
diction of earthquake intensities and detailed ground motions. b) modelling
of the dynamic behaviour of the structural system and c) determining the
cumulative probability distribution of the peak structural response, and
obtaining the integral of its product by the probability density function of
structural capacity.

Concerning step a), in order to estimate the expected seismic loads for
a specific site during a period of time, it is necessary to take into ac-—
count the uncertainties related to the occurrence, location and magnitude of
future earthquakes in the region where the site is located (Ref.l). Detailed
characteristics of ground motion during each event can be defined statisti-
cally in terms of variables such as intensity, duration and frequency cont
tent. In relation to step b), the modelling of the structural system should
include the nonlinear behaviour of the system when subjected to strong mo-
tions. The dynamic response mentioned in step c) depends on the space and
time characteristics of the load as well as on the dynamic properties (iner-
tia , damping, stiffness, strength) of the system considered, some of which
have to be dealt with as non-deterministic (Ref.2).
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In this paper an approch for the assessment of the seismic reliability
of nonlinear systems is presented. The method includes in a unified form
the steps mentioned above; this is achieved by using concepts of reliability
theory, techniques of step by step response and seismic risk analyses and
Monte Carlo simulation. The approach is applied to evaluate the reliability
of simple reinforced concrete (R/C) frames located in Mexico City soft soil
zones.

RELTABILITY OF R/C FRAMES UNDER SEISMIC LOADS

The structural systems considered in this work are ductile R/C frames
as the one shown in Fig. l. It is assumed that the behaviour of the frame's
columns when subjected to flexural cyclic loading is of the elastoplastic-
hysteretic type (Fig. 2). The system's seismic excitation on the frame is
represented by the horizontal component of the ground acceleration, Hg (Fig.
1). It is also assumed that the frame has a single mode of failure duc to
the seismic loading; this mode corresponds to the collapse of the frame as-
sociated to the simultaneous formation of plastic hinges at the ends of the
columns (Fig. 1).

It can be shown (Ref.3) that if S represents the random actions on the
structural system and R its random resistance, and if it is assumed that S
and R are statistically independent, the probability of failure(P¥) of the
idealized frame can be estimated by the following expression:

pp = P(SR) = /7 F(@)fy (@)d (1)

where P (S»R) means the probability that S will be larger than S at a cer-
tain time during the lifetime of the structure; Fg (.) is the complementary
accumulated probability distribution of § and fp (.) is the probability
density function of R.

For the case under consideration S will be defined as the ratio of the
peak deformation to the yield deformation and R equals the ductility that the
system is capable of developing before failure.

Definition of fR(')

Let us introduce an auxiliary variable ©¢=R-1, assumed to possess a
lognormal distribution. By definition the minimum value of interest of R
is unity. It can be shown (Ref.4) that the mean value and the standard
deviation of the natural logarithmof §, which are the parameters of ﬁg(.),
are given by the following expressions:

- 1/2
In (8/(Vg+ 1) ) (2)
) 1/2

' 01,5 = (In(Vg + 1)) (3)
where 0 and Vi are the mean value and the coefficient of variation of &,
respectively. § and Vi can be obtained from the mean value and the coeffi-
cient of variation of R (ref.5). The f.(.) functions corresponding to a
characteristic value (Ref.3) of R equal to 4 and Vg=0.05,0.15,0.25,0.40 are
depicted in Fig. 3.
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Computation of FS(.)

In order to compute the probability distribution of the ductility
demands associated to the R/C frame systems mentioned above, it is necessa-
ry to obtain samples of the seismic responses of the systems subjected to
the horizontal accelerations recorded at the soft soil zone of Mexico City
(the site where the frames are supposed to be located). 1In order to get
those samples, Monte Carlo simulation techniques are used to generate sets
of sample accelerograms at the site (for the time interval of interest) and
families of structural systems which reflect the uncertainties on its para-
meters.

If it is assumed that the occurrence of earthquakes at the site of
interest follows a Poisson process such that the intensities and detailed
ground motion time histories of any two different events are statistically
independent and identically distributed, it can be shown that the probability
distribution function of the maximum response can be estimated by means of
Monte Carlo simulation of sets of mechanical properties of structures and
the corresponding response of each structure to random earthquake records
generated by sampling from the distribution of the maximum intensity for
the time interval of interest. In order to determine structural responses
from ground motion intensities and detailed time histories, step by step
methods of dynamic analysis (Ref.5) are used.

GENERATION OF ACCELEROGRAMS FROM THE DISTRIBUTION OF MAXIMUM EARTHQUAKE
INTENSITIES FOR GIVEN TIME INTERVALS

The methodology proposed in this paper to generate samples of ground
motion time histories at the soft soil zone of Mexico City for a period of
time can be sinthezised in these steps: a) select a set of recorded accele-
rograme which include the main amplitudes, duration and frequency content;
b) compute the probability distribution of the maximum ground intensities
at the site for a given interval of time; c) generate the sample of expec-
ted accelerograms at the site by scaling the ordinates of the accelero-
grams of a). The scaling factors take the seismic risk at the site into
account, which is reflected through the probability distribution obtained
in b).

The steps mentioned above were applied as follows:

1) Eight accelerograms recorded during March 14, 1979 (m=7.6) and
October 24, 1980 (m=6.5) earthquakes were selected from a 20 year record at
the site. The chosen accelerograms have peak ground accelerations which
vary from 30 to 100 cm/sz, the latter being the maximum recorded at the
site; their duration varies between 30 and 80 s and their corresponding seudo-
velocity spectra show a frequency content typical of Mexico City soft soil
(Ref.6).

2) As the seudovelocity spectra show good correlation with the local
seismic amplification effects of the mentioned type of soil, its maximum
ordinate for a 0.10 percentage of critical damping, SV(O.lO), was taken
as representative of the maximum ground motion intensity at the site. 1In
order to compute the probability distribution of SV(O.IO) for 50 and 100
year time inteérvals, it was assumed that the occurrence of earthquakes in
the region where the site is located can be represented by a Poisson pro-
cess; therefore, the probability, P, that a particular S is exceeded can
be expressed by
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P(Sv) = exp (—V(SV)TO) (4)

where T, is the interval of time and the rate of occurrence v was evalua-
ted with the expression

V(S ) = vo(s." - ST (5)
v v Vi

In Eq.(5) v, and r depend on the seismicity of the region and §
is the maximum Sy which may occur at the site. 1In Fig. 4 the P(SV)
obtained from the seudovelocity spectra associated to the 20 year record
sample are presented; it was assumed that S, =200 and 412 cm/s, and To =50
and 100 years. The values of Sy were associated to large events at close
epicentral distances which would produce peak ground accelerations of 250
and 500 cm/sz, respectively (Ref.4).

3) Values of Sv(0.10) were simulated from the distribution of maximum
intensities for 50 and 100 years. For each simulated S;, one of the eight
accelerograms mentioned above was randomly chosen and scaled so as to
give place to the corresponding value of S,(0.10).

SIMULATION OF THE NONLINEAR SHEAR SYSTEMS

As mentioned before, the behaviour of the columns of the frame system
is characterized by two parameters: the initial lateral stiffness K and
yield shear force V_ (Fig. 2). It can be shown [(Ref.4) that K is a funec-
tion of the elastic¥ty modulus of the concrete, E, the inertia moment of the
columns cross—-sections, I, and the length of the columns, L; and that V
depends on a formulae error parameter ¢, the yielding stress of the reinfor-
cing steel, f_, the effective depth of the column cross section, d, the
concrete strength, fé, the cross section of the reinforcing steel, Ag, and
the width of the column cross section, b. Accordingly to Ref.7, the fol-
lowing parameters can be considered as random: E, I, ¢, f.., fé and d
while L, b and Ag can be assumed as deterministic. Theregore, K and Vy
are also random variables. It can be shown (Ref.4) that second-moment
probability descriptions of K and V_ can be obtained in terms of its para-
meters. If it is assumed that K ang V, are statistically independent and
lognormally distributed, it is possible to simulate pairs of values (Kj,
VYi) with i=1...M which represent M structural systems.

APPLICATION EXAMPLE

The methodology described in the previous paragraphs was applied to
estimate the probability of failure, P_, of R/C frames with initial fun-
damental period of 0.5, 0.8, 1.5, 2.5 and 3.5 s and a percentage of criti-
cal damping of 0.05. The latter value is being recommended in Ref.4. The
values of the parameters required to simulate the structural systems are
given elsewhere (Ref.4); M was taken as 40.

The results obtained are shown in Table 1; from the table, it can be
observed that the Py of the rigid systems( periods of 0.5 and 0.8 s) on
soft soil are small compared with the flexible ones, whose periods corres-
pond to the dominant ground periods typical of this type of soil (Ref.6).
The influence of S, (the upper bound of the ground intensity) on the values
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of P, is shown for the structural system with a period of 2.5 s. The in-
fluence of T (the interval of time) on Pf is also shown on the mentioned
table.

CONCLUSIONS

1) The methodology proposed in this paper to estimate the reliability
of simple R/C frames under seismic loading allows to incorporate with rela-
tive ease the uncertainties on the structural properties and those about
the seismic excitation.

2) The probabilities of failure of the considered systems show the
extreme sensitivity to the coefficient of variation of the structural re-
sistance, to the probability distribution of the maximum ground intensity
at the site of interest for a given period of time, and to the upper limit
of the ground intensity.

3) A systematic study of the nominal reliabilities of realistic
structural systems designed in accordance with different requirements and
their comparison with observed performance of actual systems is mandatory
in order to improve the usefulness of seismic risk studies.
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TABLE 1. FAILURE PROBABILITIES OF STRUCTURAL SYSTEMS WITH NATURAL PERIODS T, COEFFICIENT OF VARIATION
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FIG 1 STRUCTURAL SYSTEM ARD COLLAPSE MECHANISM

Vo= Cuctility
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